Spring AI Tracing
How to use OpenInference instrumentation with Spring AI and export traces to Arize Phoenix.
Prerequisites
Java 11 or higher
(Optional) Phoenix API key if using auth
Add Dependencies
1. Gradle
Add the dependencies to your build.gradle
:
dependencies {
implementation 'org.springframework.ai:spring-ai-starter-model-openai'
implementation 'io.micrometer:micrometer-tracing-bridge-brave:1.5.1'
implementation project(path: ':instrumentation:openinference-instrumentation-springAI')
// OpenTelemetry
implementation "io.opentelemetry:opentelemetry-sdk"
implementation "io.opentelemetry:opentelemetry-exporter-otlp"
implementation "io.opentelemetry:opentelemetry-exporter-logging"
testImplementation 'org.springframework.boot:spring-boot-starter-test'
testRuntimeOnly 'org.junit.platform:junit-platform-launcher'
}
Setup Phoenix
Pull latest Phoenix image from Docker Hub:
docker pull arizephoenix/phoenix:latest
Run your containerized instance:
docker run -p 6006:6006 -p 4317:4317 arizephoenix/phoenix:latest
This command:
Exposes port 6006 for the Phoenix web UI
Exposes port 4317 for the OTLP gRPC endpoint (where traces are sent)
For more info on using Phoenix with Docker, see Docker.
If you are using Phoenix Cloud, adjust the endpoint in the code below as needed.
Configuration for Phoenix Tracing
private static void initializeOpenTelemetry() {
// Create resource with service name
Resource resource = Resource.getDefault()
.merge(Resource.create(Attributes.of(
AttributeKey.stringKey("service.name"), "spring-ai",
AttributeKey.stringKey(SEMRESATTRS_PROJECT_NAME), "spring-ai-project",
AttributeKey.stringKey("service.version"), "0.1.0")));
String apiKey = System.getenv("PHOENIX_API_KEY");
OtlpGrpcSpanExporterBuilder otlpExporterBuilder = OtlpGrpcSpanExporter.builder()
.setEndpoint("http://localhost:4317") # adjust as needed
.setTimeout(Duration.ofSeconds(2));
OtlpGrpcSpanExporter otlpExporter = null;
if (apiKey != null && !apiKey.isEmpty()) {
otlpExporter = otlpExporterBuilder
.setHeaders(() -> Map.of("Authorization", String.format("Bearer %s", apiKey)))
.build();
} else {
logger.log(Level.WARNING, "Please set PHOENIX_API_KEY environment variable if auth is enabled.");
otlpExporter = otlpExporterBuilder.build();
}
// Create tracer provider with both OTLP (for Phoenix) and console exporters
tracerProvider = SdkTracerProvider.builder()
.addSpanProcessor(BatchSpanProcessor.builder(otlpExporter)
.setScheduleDelay(Duration.ofSeconds(1))
.build())
.addSpanProcessor(SimpleSpanProcessor.create(LoggingSpanExporter.create()))
.setResource(resource)
.build();
// Build OpenTelemetry SDK
OpenTelemetrySdk.builder()
.setTracerProvider(tracerProvider)
.setPropagators(ContextPropagators.create(W3CTraceContextPropagator.getInstance()))
.buildAndRegisterGlobal();
System.out.println("OpenTelemetry initialized. Traces will be sent to Phoenix at http://localhost:6006");
}
}
Run Spring AI
By instrumenting your application, spans will be created whenever it is run and will be sent to the Phoenix server for collection.
import com.arize.instrumentation.springAI.SpringAIInstrumentor;
import org.springframework.ai.openai.OpenAiChatModel;
initializeOpenTelemetry();
// 2. Create OITracer + instrumentor
OITracer tracer = new OITracer(tracerProvider.get("com.example.springai"), TraceConfig.getDefault());
ObservationRegistry registry = ObservationRegistry.create();
registry.observationConfig().observationHandler(new SpringAIInstrumentor(tracer));
// 3. Build Spring AI model
String apiKey = System.getenv("OPENAI_API_KEY");
OpenAiApi openAiApi = OpenAiApi.builder().apiKey(apiKey).build();
OpenAiChatOptions options = OpenAiChatOptions.builder().model("gpt-4").build();
OpenAiChatModel model = OpenAiChatModel.builder()
.openAiApi(openAiApi)
.defaultOptions(options)
.observationRegistry(registry)
.build();
// 4. Use it — traces are automatically created
ChatResponse response = model.call(new Prompt("What is the capital of France?"));
System.out.println("Response: " + response.getResult().getOutput().getContent());
Observe
Once configured, your OpenInference traces will be automatically sent to Phoenix where you can:
Monitor Performance: Track latency, throughput, and error rates
Analyze Usage: View token usage, model performance, and cost metrics
Debug Issues: Trace request flows and identify bottlenecks
Evaluate Quality: Run evaluations on your LLM outputs
Resources
Last updated
Was this helpful?